Conformal blocks from vertex algebras and their connections on ℳg,n

نویسندگان

چکیده

We show that coinvariants of modules over vertex operator algebras give rise to quasi-coherent sheaves on moduli stable pointed curves. These generalize Verlinde bundles or vector conformal blocks defined using affine Lie studied first by Tsuchiya-Kanie, Tsuchiya-Ueno-Yamada, and extend work a number researchers. The carry twisted logarithmic D-module structure, hence support projectively flat connection. identify the Atiyah algebra acting them, generalizing Tsuchimoto for algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Designs based on Vertex Operator Algebras

We introduce the notion of a conformal design based on a vertex operator algebra. This notation is a natural analog of the notion of block designs or spherical designs when the elements of the design are based on self-orthogonal binary codes or integral lattices, respectively. It is shown that the subspaces of fixed degree of an extremal self-dual vertex operator algebra form conformal 11-, 7-,...

متن کامل

On quantum vertex algebras and their modules

We give a survey on the developments in a certain theory of quantum vertex algebras, including a conceptual construction of quantum vertex algebras and their modules and a connection of double Yangians and Zamolodchikov-Faddeev algebras with quantum vertex algebras.

متن کامل

A Remark on Simplicity of Vertex Algebras and Lie Conformal Algebras

I give a short proof of the following algebraic statement: if V is a simple vertex algebra, then the underlying Lie conformal algebra is either abelian, or it is an irreducible central extension of a simple Lie conformal algebra. This provides many examples of non-finite simple Lie conformal algebras, and should prove useful for classification purposes.

متن کامل

Vertex Lie algebras, vertex Poisson algebras and vertex algebras

The notions of vertex Lie algebra and vertex Poisson algebra are presented and connections among vertex Lie algebras, vertex Poisson algebras and vertex algebras are discussed.

متن کامل

~-adic quantum vertex algebras and their modules

This is a paper in a series to study vertex algebra-like structures arising from various algebras including quantum affine algebras and Yangians. In this paper, we study notions of ~-adic nonlocal vertex algebra and ~-adic (weak) quantum vertex algebra, slightly generalizing Etingof-Kazhdan’s notion of quantum vertex operator algebra. For any topologically free C[[~]]-module W , we study ~-adic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2021

ISSN: ['1364-0380', '1465-3060']

DOI: https://doi.org/10.2140/gt.2021.25.2235